Comparaison Between Polypropylene (PP) and Polyester (PET)

PET Benefits	Explanation	Conclusion
Better resistance to UV aging	PET's chemical formula has an aromatic ring	PP "suffers" from the weather and becomes
	making it highly resistant to UV. In contrast, PP	increasingly fragile with UV exposure and
	needs treatment to resist UV light. This	temperature changes. On the other hand, PET
	treatment, when applied, is not 100% effective.	gets very little damaged in comparison.
Better resistance to thermal	PP has a phase change temperature (glass	Therefore, a PP product will already be highly
aging	transition) of -10°C. Each time temperature	damaged after one season, while PET will
	changes from below -10°C to over -10°C, PP	remain virtually intact
	deteriorates. As for PET, the lowest phase	
	change temperature is 70°C. Therefore, PET does	
	not go through a phase change under common	
	temperatures and is thus not subjected to	
	thermal aging.	
Better strength under cold	The aforementioned glass transition is a physical	When temperature drops below -10°C, PP
conditions	process. When finding itself below its glass	becomes brittle, whereas PET remains
	transition temperature, the material is more like	flexible. Therefore, if we need to move the
	glass than rubber. It is therefore stronger when	product at that temperature or in the
	pulling on it, but more sensitive to impact and	presence of hail, if it is made of PP, the fibres
	distortion. Note that PET is already below its	will break and the product will get damaged.
	glass transition temperature at room	
	temperature, but it is flexible because of the	
	aromatic ring in its chemical formula.	
PET fibres are bulkier that PP	This is explained by the very little electrical	PET fibres being bulkier, a product made from
fibres	activity due to the chemical nature of polymers	PET fibres will contain more air that a product
	(Van der Waals attraction) which are much more	made from PP fibres. That said, air is one of
	significant for PET than PP. Therefore,	the best thermal insulator, and more air
	PET fibres naturally tend to "crimp" as opposed	means better thermal resistance. This way,
	to PP fibres.	products made from PET fibres are better
		thermal insulators than those made from PP.

Products made from PET fibres are therefore more resistant, long lasting, and provide better insulation than PP products

478, Notre-Dame, Saint-Remi (Quebec) Canada JOL 2L0

www.**DuboisAg**.com 450.454.3961 • 1.800.667.6279